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This paper explores some general issues in
diagrammatic reasoning using the domain of geometry
as the primary example. Geometry has consistently
played an important role as a model domain for studying
diagrammatic reasoning and it’s relation to human and
machine problem solving. In one of the early Artificial
Intelligence papers, Gelernter (1963) showed how 
problem diagram could help prune backward search in
geometry theorem proving. More recently, in an article
by Larkin and Simon (1987), which has been a real
driving force of much of the current interest in
diagrammatic reasoning, the authors turn to geometry as
one source of evidence for their claims about the
advantages of using diagrams in reasoning. Others have
explored the role of visual images in geometric
reasoning (Furnas, 1990; Kim, 1989) and learning
(Suwa & Motoda, 1991). Without setting out to do so,
we have found ourselves contributing to this literature
as well. In trying to account for the abstract planning
behavior of geometry experts, we discovered that a
diagram-based representation provided a much better
explanation of this behavior than the standard,
sententially-based approaches to abstract planning
(Koedinger & Anderson, 1990). We built a computer
simulation called DC (the Diagram Configuration
model) to demonstrate this.

We start the paper by summarizing the work of
Larkin and Simon (1987) in characterizing the
advantages for diagrammatic representations. Then
drawing upon our own experience and the history of
research in geometry problem solving, we elaborate on
these issues and, in particular, discuss in more detail
some advantages that were not fully addressed in Larkin
and Simon. While there has been much said about the
role of diagrams in problem solving, we also discuss
their role in learning and in shaping the representations
that result from this learning.

ADVANTAGES OF DIAGRAMS

Review of Larkin and Simon
In their paper "Why a Diagram is (Sometimes)

Worth Ten Thousand Words", Larkin and Simon present
a framework for understanding the role of diagrams in
problem solving. In particular, they contrast the use of
diagrammatic and sentential representations. A
representation is composed of a data structure that stores
states or steps of problem solving and a program that
can interpret and modify this data structure. They define

sentential and diagrammatic representations as follows
(p. 68):

¯ A sentential representation has a data structure "in
which elements appear in a single sequence" like
the words and sentences in a text or the written
steps in a problem solution.

¯ A diagrammatic representation has a data structure
"in which information is indexed by two-
dimensional location" like the components of a
diagram.
The task is to explain when and why diagrammatic

representations are more computationally efficient than
sentential representations that contain the same
information. Larkin and Simon (1987; p.98) list three
reasons "why a diagram can be superior to a verbal
description for solving problems":

¯ Locality aids search: "Diagrams can group together
all information that is used together, thus avoiding
large amounts of search for the elements needed to
make a problem-solving inference."

¯ Symbolic labels unnecessary: "Diagrams typically
use location to group information about a single
element, avoiding the need to match symbolic
labels."

¯ Perceptual ease: "Diagrams automatically support
a large number of perceptual inferences, which are
extremely easy for humans."
The next three sections cover these three points.

Eaeh section starts by reviewing the arguments made by
Larkin and Simon and finishes with qualifications
and/or extensions to these points.

Locality Aids Problem Search as well as
Knowledge Search

Locality and Knowledge Search. A familiar strategy
of high school geometry students is to record proof
steps by marking the problem diagram (see Figure 1) 
an alternative to writing them down in standard
statement notation (see Table 1). Such an annotated
diagram aids students in holding together information
that they need to make further inferences. In contrast,
information within a list of written statements may be
visually separated and require search to identify.

For instance, to use the side-angle-side rule for
inferring triangle congruence a problem solver must
locate three congruence relationships - two between
corresponding sides of the triangles and one between
corresponding angles. In searching a list of statements
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for these three relationships, one might need to consider
numerous possible combinations of three statements
that exist in the list. Consider the situation just before
step 10 in Table 1. There are 9 already proven
statements that might contribute to the next inference.
If the the student is going to make a triangle congruence
inference, she must find 3 of these statements that
match with a triangle congruence rule (e.g., SSS, SAS,
ASA, AAS). There are 9 choose 3 or 84 possible
combinations to consider. In contrast, if these
relationships are marked on a diagram (see Figure 1),
one can quickly identify them since the side-angle-side
configuration comes together in each triangle at a single
vertex.

Table 1. Problem and solution in sentential form.

Problem statement in sentential form:
"Given AC -~ AD and AXB bisects CXDI
prove that ~/CBX M ~/DBX."

Solution in sentential form:
Statements:

1. AC = AD
2. ~ bisects
3. CX = DX
4. AX -- AX
5. AACX--- AAOX
6. Znxc -= ZnXO
7. nB .L C"l)
8. LBXC --- ZBXD
9. BX --- BX
10. ~BCX = ~BOX
1 I. ZCBX --- ZDBX

Reasons:
1.6|ven
2. G|ven
:3. Oef-b|se©tor (2)
4. Reflex|re
S. SSS (1 3 4)
6. Cerres=Perts (5)
7. Eq-L|near-nngs (5)
8. Eq-L|near-nngs (7)
9. Reflex|re
10. SnS (3 8 9)
11. Cerres-parts (10)

Locality and Problem Search. The example above
illustrates the role of the diagram in aiding knowledge
search - i.e., the search for applicable knowledge. The
geometry diagram can also be used to aid problem
search - i.e., the use of that knowledge to search for a
problem solution (Newell, 1990). Diagrams can aid
problem search or operator selection using the
following heuristic.

Physical Distance-Reducing Heuristic:
An operation which reduces the physical distance
between known and desired objects may also
reduce the logical distance between them.

Greeno (1978) found that geometry students use
this heuristic to solve a certain class of "angle-chaining"
problems. Of course this heuristic does not always lead
to the shortest logical solution. The problem in Figure
1 provides an example. After concluding that AnCX
--- AnDX (see step 5 in Table 1), any three of the
corresponding angles of these triangles might be proven
congruent. The parts LBXC -- ZBXD (step 6) are
closest to the goal and thus, would be the ones selected
by the physical distance-reducing heuristic. However,

as the reader may have noticed, choosing Lcnx ---
LDnX can lead to AnCB -- A~nDB and to a more
direct solution. Nevertheless, in general this heuristic
can lead to a solution more quickly. As an estimate, in
this problem the probability of directly finding any one
of the solutions is 50% higher using the heuristic (.17)
than it is without it (.11).

Elaborations on Labelling Issue
Larkln and Simon’s second advantage of diagrams

is that they "eliminate" the need to keep track of and
match symbolic object labels. This is an important
consequence of the locality feature of diagrams (as such
it is not really an independent advantage of diagrams).
For example, in the diagram in Figure lb, labels are not
necessary to see that the angles marked with the 11 are
part of the two triangles on the right in the diagram -
this facilitates the inference from step 10 to 11. In
contrast, making this inference in the sentential
representation requires the use of point labels. To go
from ABCX to ,ZCBX, one has to notice that both
contain the same three point labels B, C, and X - this
guarantees that ZCBX is a part of,~BCX. Similarly,
ZOBX is a part of -*-BOX because they share point
labels.

An interesting twist on this issue is that the
conventional labelling notation and formal rule set in
geometry is not adequate to facilitate purely sentential
reasoning. For example, from the label alone one
cannot infer that A~CBX is apart of A~BCn (the
bigger triangle) - the angle refers to point X but not to
n while the triangle refers to point n but not to X.

The claim that diagrammatic representations
"eliminate" the need for object labels is too strongly
stated. While the point labels in Figure lb are not a
necessary part of the diagrammatic solution (they were
provided for reader to see the correspondence with Table
1), the markings on segments and angles are. Clearly
these markings are a type of symbolic label and they
serve the same purpose, "distal access" (Newell, 1990;
p. 75), that the symbolic labels serve in a sentential
representation. Despite the claim that diagrams group
together information that is typically used together,
some information that is needed together is not grouped
together in the diagram. For example, the sides nC and
~m
no are needed together as corresponding sides of
triangles ,d~ncx and ,dLnDX in order to make the
side-side-side inference in step 5. However, they are not
grouped together in the diagram, at least they are not
any more so than nc and nX which could conceivably
be considered as corresponding parts of these two
triangles. The single hash markings are a symbolism
that directs the grouping together of nc and no.

Perceptual Ease and Emergent Properties
Perceptual Ease Through Practice. Larkin and

Simon’s third claim about the advantages of
diagrammatic representations is that diagrams allow
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a. Problem in diagrammatic form:
c

D

b. Solution in diagrammatic form:
c

D
Figure 1. Diagrammatic versions of the problem and solution shown in Table 1. The
numbered markings correspond with the steps in the sentential solution.

easy perceptual inferences to replace hard symbolic
ones. This claim is based on an assumption that
perceptual inferences are generally easier than symbolic
inferences. While this assumption is probably true, it
invites the question: why are perceptual inferences
generally easier? In Koedinger and Anderson (1990), 
expressed the feeling that "it is unlikely that perceptual
inferences are somehow inherently easier (except in
terms of the locality heuristic noted above)". Instead,
we suggested that often perceptual inferences are more
practiced than the corresponding symbolic inferences and
this makes them seem easier. Clearly there are cases
where symbolic inferences are easier than perceptual
ones, for example, consider someone who is facile with
symbolic logic but less practiced in using Venn
diagrams. This person will be much faster doing
syllogism problems symbolically rather than
diagrammatically. Nevertheless, in many domains, like
geometry and physics, it is clear that most people have
had more prior experience with images than with formal
notations and they are likely to find perceptual
inferences in these domain easier.

Larkin and Simon present an example of a
computer simulation in geometry theorem proving to
illustrate the "perceptual ease" that is facilitated by
diagrammatic representations. It is clear from the
example, if not self-evident, that human’s perform
many perceptual inferences in this domain with much
less effort (e.g., recognizing a triangle in a diagram)
than corresponding logical inferences (e.g., recognizing
a triangle from a list of sentential segment
representations). However, the example provides no
reason to believe that this relative ease is a function of
the diagrammatic representation per se -- rather it may
simply reflect our relative lack of experience in
recognizing geometric figures from a sentential
representation. The example provides no computational
evidence that a diagrammatic representation would be
more efficient than a sentential one. In fact, the
computer code that simulated working with these two
different representations was identical. Larkin and
Simon’s point, of course, was to argue (and
convincingly so) that certain aspects of the process their
code simulated are much easier for humans to do when
given a diagrammatic representation than when given a

sentential one. However, the example does not provide
any clue as to why diagrammatic representations are
easier for humans nor does it provide an indication of
whether (or when) picking a diagrammatic
representation over a sentential one will lead to a more
efficient computational process (apart from the locality
feature mentioned above).

Perceptual Ease Through Emergent Properties.
Despite our earlier claim in Koedinger and Anderson
(1990; see above), I now think there is another feature
of diagrams besides locality that can lead to more
efficient processing as well as provide an alternative to
the practice explanation for "perceptual ease" in
humans. In the process of drawing a diagram for a
given situation, properties may emerge that weren’t
described in the original situation. These emergent
properties are potential consequences of the given
situation that can directly cue inferences that would
require more costly indirect processing in a sentential
representation.

This emergent-property feature of diagrams was
hinted at in the following quote from Larkin and
Simon:

’q’he process of drawing the diagram makes these
new inferences which are then displayed
explicitly in the diagram itself." (p. 70)

They were referring to inferences mentioned above,
like seeing L 12 I! X is the same as ~ 12 !! A, and
modelled with their "perceptual inference rules". These
inferences are based on the topological relations that are
explicit in the diagrammatic data structure, but only
implicit in the sentential data structure.

In addition to topological relations in
diagrammatic data structures, there are also geometric
relations that can lead to useful emergent properties.
Whenever one draws a diagram one is making
commitments, for example, about the sizes of segments
and angles. These are not usually meaningful in any
way and, in fact, they are formally irrelevant to
validating the generalization to be proven. However,
they can be used to guide problem search.

The Use of Emergent Properties in Geometry.
Gelemter’s (1963) Geometry Theorem Proving Machine
was perhaps the first system to take advantage of these

153



emergent geometric properties in diagrams. Gelernter
used these properties as a heuristic to prune backward
search. A statement (subgoal) generated by the
backward application of a rule was compared against the
diagram and if it looked false in the diagram it was
rejected. This strategy works because in an accurately
drawn diagram (i.e., one where the givens are true), all
statements that could be proven will look true. In other
words, the diagram can provide a counter-example to
statements conjectured in backward reasoning.

Table 2. The input to DC for the problem above.

a. Problem
( i ine

(line

( iine

(line

(line

(line
(point

(point

(point
(point

(point

diagram input (Figure la):
LINE-DXC points (D X C)

LINE-AXB points (A X B)

LINE-BC points (B C)

LINE-DB points (D B)

LINE-DA points (D A)

LINE-AC points (A C)
A x.coord 70 y.coord 83 )

D x.coord 123 y.coord 127)

C x.coord 123 y.coord 39 )

B x.coord 210 y.coord 83 )

X x.coord 123 y.coord 83 )

Prob~m sm~ment input (Tab~ l a):
(problem pl

givens ((congruent (segment A 

(segment A D) 
(bisector (segment A X 

(segment C X D)))
goal (congruent (angle C B 

(angle D B X)) 

While Gelernter’s program used the diagram to
prune states that were generated from a sentential
representation of the formal rules, essentially we have
flipped these roles in our model of geometry problem
solving (DC; Koedinger & Anderson, 1990). In DC,
the diagram is used to generate states and formal
knowledge of the domain is used to prune them.
Putting more knowledge in the state generator leads to
more efficient problem solving.

Table 3 shows the output of DC’s diagram parsing
and conjecturing components for the problem in Figure
1. The input to this process is shown in Table 2a. The
first part of Table 3 shows the results of DC’s "diagram
parsing", that is, the identification of objects that are
constrained by the topology of the diagram. Diagram
parsing is done using only the information in the line
objects of Table 2a (the point positions are not
necessary). This step is basically equivalent to Larkin
and Simon’s perceptual enhancement, it produces the
objects (like segments, angles, and triangles) that are
"perceptually obvious" (p. 88).

The next step "configuration conjecturing" makes
use of geometric relations in the diagram, these result
from the point positions specified in the point objects
in Table lb. DC uses this information to measure the
sizes of segments and angles and then makes conjectures
about various geometric configurations. These are
tentative conclusions that indicate possibly (though not
necessarily) provable states in the problem space for
this problem. (It is only because of the compact nature
of DC’s representation, discussed below, that it is able
to enumerate all of these states.)

DC recognizes 14 configurations in this problem
and, in the process of recognition, connects them with
other configurations based on overlapping parts. The
result is a network, most of which is shown in Figure 2
(the remainder is not relevant to the solution of this
particular problem). The task of the problem solver at
this point is to search through this network to find a
logically valid connection between the problem givens
and the goal. DC’s problem input is a combination of
diagrammatic (Table 2a) and sentential (2b) forms - 
is consistent with the way problems are usually
presented in geometry textbooks. The sentential
information about the problem givens and goals is used
at this point in the problem solving where the search
starts. Integrating the configuration conjecturing and
search processes would provide for a more accurate and
efficient model, but by separating them we were able to
identify the individual contribution of each. The search

Table 3. DC’s diagram parsing and configuration conjecturing given Table 2a.

DIAGRAM PARSINGz

Segments: (SEC-AC SEG-DA SEC-DB SEG-BC SEG-AB SEG-AX SEG-XB SEG-DC SEG-DX SEG-XC)

Angles: (<CAB <BAD <CAD <BCD <DCA <BCA <CDB <ADC <ADB <DBA <ABC <DBC <CXB <BXD <DXA <AXC)

Adjacent supplementary angles: (SUPP-AXB-D SUPP-AXB-C SUPP-DXC-A SUPP-DXC-B)

Vertical angles at: (CROSS-X-ABCD)

Triangles: (TRI-ABD TRI-ADX TRI-ACD TRI-BDX TRI-BCD TRI-ABC TRI-BCX TRI-ACX)

CONFIGURATION CONJECTURINGz

Hypothesize bisected segment: (BISECTED.SEG-DC-AT-X)

Hypothesize perpendicular cross: (PERP-CROSS-X-ABCD)

Hypothesize bisected angle: (BISECTED.ANGLE-CAD-AT-B BISECTED.ANGLE-DBC-AT-A)

Hypothesize congruent pair of adjacent angles: (WP.ANGLE-ADB-C=ANGLE-BCA-D)

Hypothesize isosceles triangles: (ISOS-TRI-ACD ISOS-TRI-BCD)

Hypothesize right triangles: (RT-TRI-ADX-X RT-TRI-BDX-X RT-TRI-BCX-X RT-TRI-ACX-X)

Hypothesize shared-side congruent tris: (TRI-ABC=TRI-ABD TRI-ACX=TRI-ADX TRI-BCX=TRI-BDX)
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Figure 2. A portion of the network formed by DC’s diagram parsing and configuration
conjecturing components for the problem in Figure I.

component is relatively easy. Most of the
computational work is done in forming the network -
increasing from about 60% to 96% of the total time as
problems increase in difficulty. We’ll say more about
DC below, but the point to be made here is that the
network formed as the result of configuration
conjecturing is much smaller and much easier to search
than the space of formally possible states that must be
considered if the geometric relations in the diagram are
not used. Some of the possible states in DC’s problem
space may not be provable - this will result when an
overspecialized diagram is drawn, for example, if Figure
la had been drawn so that ,~IbACD is congruent to
~b, BCD - however, these potential distractions are only
a small subset of the distractions possible if geometric
properties are not considered.

In general, because a diagram can contain properties
beyond those needed to generate it, it can be used to
convert a nominally deductive problem into an inductive
one. Using the diagram one can induce (see) potential
consequences of the given situation that aren’t directly
apparent in the verbal generalization to be proven. This
is an important advantage of diagrams and of models
more generally (Johnson-Laird, 1983).

USING STRUCTURAL CONSTRAINTS TO
GUIDE LEARNING

As indicated in the introduction, we became
interested in diagrammatic reasoning because it provided
an answer to a problem we had: How could we model
the abstract planning abilities we had observed in the
behavior of the geometry experts. Using the verbal
report methodology, we had found that skilled problem
solvers make leaps of inference that skip over steps in a
complete formal solution like the one shown in Table
I b. While coming up with a proof sketch, experts were
most likely to mention steps like 5, 7 , and 10 and
likely to skip the others. They would fill in the skipped
steps after developing an abstract plan. As described in
Koedinger and Anderson (1990), we found that neither
the standard macro-operator nor abstract planning
methods could provide a good explanation for the
regularity in this step skipping behavior. Instead we
found that expert’s knowledge appeared to be organized

around certain prototypical geometric configurations.
These configurations group together clusters of
geometric knowledge that can be cued by the diagram
(as discussed above) and can lead to numerous inferences
in a single step. These configurations were the basis of
the DC model and we showed how they provided an
accurate account of our step-skipping data and how they
lead to a drastic reduction in the size of the search space.
We have also used DC as the expert component of an
Intelligent Tutor (Koedinger & Anderson, in ~’ess).

CONGRUENT-TRIANGLES-SHARED-SIDE :

Configuration: _X

,d z
Whole-statement: ~,Y:,iW -- 4uZXW

Part-properties: !. ~--
2. YW -- ZW
3. LY = Zz
4. ZYX’v,’ = ZZXt/
6. LXa.ni’Y = ZX’,’/Z

S ufficient-conditions:
{1 2} {1 4) {2 5)
{4 5) {3 4} {3 5)

Figure 3. A diagram configuration schema. In the
sufficient-conditions, { 1 2} means that if the part-
properties XY=XZ and YW=ZW are proven, all the
properties of the schema can be proven.

Figure 3 shows a configuration schema. The
configuration slot contains recognition knowledge that
can pick out potential instances of the configuration in
geometry diagrams. The top-row of the network in
Figure 2 contains the 3 instances of the CONGRUENT-
TRIANGLES-SHARED-SIDE configuration that occur in
the diagram in Figure 1. The whole-statement slot
indicates the geometry statement usually associated with
this configuration. The part-properties slot indicate
properties of parts of this configuration. They are
known (i.e., can be proven) whenever the whole-
statement is known or whenever one of the sufficient-
conditions can be satisfied. These part-properties are
shown in the bottom row of the network in Figure 2
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and may overlap with other configuration schemas. The
sufficient-conditionS indicate subsets of the part-
properties that are sufficient to prove the whole-
statement and the remaining part-statements. This
pattern completion nature of configuration schemas
explains one way in which experts can skip steps.

These configurations are perceptual chunks (Chase
& Simon, 1973) that experts have acquired from
considerable experience in solving geometry problems.
We separated out this section from the discussion on
advantages of diagrams for reasoning, because while
diagrams have some advantages for reasoning that are
fairly independent of the nature of a problem solver’s
knowledge, the advantage made possible by perceptual
chunks is very much dependent on the nature and
organization of this knowledge. On the other hand,
these perceptual chunks would not be learned if experts
had not been working with diagrams. If, instead, they
had been learning with a purely sentential version of
geometry, they would not (at least, not easily) have
acquired these perceptual chunks. One could achieve
some level of expertise in the purely sentential version
and might acquire macro-operators or abstractions that
would make them steadily more effective and efficient.
But, they would not achieve the efficiency facilitated by
DC’s configuration schemas.

We have argued that standard skill acquisition
models cannot explain the acquisition of DC’s schemas
(Koedinger & Anderson, 1989, 1990). The difficulty
arises because the basic domain rules (e.g., the rules in
the reason column of Table 1) are organized in a very
specific way within the DC model. The standard
models provide no clear reason why this organization
would evolve in contrast to the numerous other
possibilities. A mechanism is needed that can take
advantage of the structural constraints in geometry
diagrams to guide how it organizes and chunks together
the basic operators. This is a line of current research.

In a longer version of this paper1, I give an
example of how the techniques used in DC might be
profitably generalized to physics problem solving.

CONCLUSION
This paper argues for the following advantages of

diagrammatic representations (a modified and extended
version of Larkin and Simon’s list):

¯ Locality advantages. Pieces of information that
need to be used together or logically connected are
typically physically close together in diagrams.
This feature of diagrams can be used to reduce,
though not necessarily eliminate, knowledge
search, problem search and the need for symbolic
labels.

¯ Emergent properties. Diagrams can have both
"psychological" and "computational" emergent
properties. Psychological emergent properties are
due to well-practiced perceptual inference knowledge

IThis longer version is available from the author.

that makes working with diagrams "easier" (for
humans) than working with sentential
representations. Computational emergent
properties are due to geometric relations, for
example, that can be used to drastically reduce the
search space from the multitude of states that are
syntactically possible in the sentential
representation.

* Structural constraints. Whole-part relations in
diagrams (and in models of the world more
generally) can be used as a guide to efficient
knowledge organization. A problem solver that is
either given or can learn such a knowledge
organization is likely to be more efficient than a
problem solver who’s knowledge is organized via
sententially-based abstractions or macro-operators.
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